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A statistically stationary and nearly homogeneous turbulent shear flow is established
by an additional volume forcing in combination with stress-free boundary conditions
in the shear direction. Both turbulent energy and enstrophy are stationary to a
much better approximation than in previous simulations that use remeshing. The
temporal fluctuations decrease with increasing Reynolds number. Energy spectra and
shear-stress cospectra show that local isotropy is satisfactorily obeyed at the level of
second-order moments. However, derivative moments of high order up to n = 7 yield
increasing moments for n > 4 for the spanwise vorticity and the transverse derivative
of the streamwise velocity in the range of Taylor Reynolds numbers 59 6 Rλ 6 99.
These findings, which are in apparent violation of local isotropy, agree with recent
measurements.

1. Introduction
Turbulent flows in nature and the laboratory are mostly anisotropic on their largest

scales. A typical situation is one in which an imposed shear gradient sustains the
turbulence. One fundamental question is the effect of anisotropic large scales on
the statistical behaviour of the smaller scales. Kolmogorov (1941) postulated that at
sufficiently large Reynolds number statistics of small scales become isotropic even
if the large-scale driving is anisotropic. Consequently, cross-correlations, indicated
e.g. by the shear-stress cospectrum Exy(k) in the Fourier space, should decay very
fast to zero with respect to increasing wavenumber. Based on this postulate, Lumley
(1967) predicted, for a turbulent shear flow with constant mean shear rate S , the
rate at which anisotropy vanishes with decreasing scale size. If the shear time scale,
Ts = S−1, is much greater than the viscous time scale, τη = (ν/ε)1/2, in other words, if
Sτη � 1 holds, he showed by dimensional arguments that the shear-stress cospectrum
follows Exy(k) ∼ ε1/3Sk−7/3. Quantities ν and ε are the kinematic viscosity and the
energy dissipation rate, respectively. Note that the cospectrum would be exactly zero
in a system that is perfectly isotropic on all scales. The concept of local isotropy
at the level of second-order moments seemed to be supported by direct numerical
simulations (She et al. 1993) and a number of high-Reynolds-number measurements
in turbulent boundary layers (Caughey, Wyngaard & Kaimal 1979; Saddoughi &
Veeravalli 1994). Very recently, however, Kurien & Sreenivasan (2000) found a slower
decay of anisotropies in an atmospheric boundary layer at Rλ ≈ 2000. They reported,
e.g. a scaling of the cospectrum with Exy(kx) ∼ k−2.1

x . Deviations from the local
isotropy were also found in a number of new experiments in nearly homogeneous
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shear flows when attention was focused on higher-order moments (Garg & Warhaft
1998; Ferchichi & Tavoularis 2000; Shen & Warhaft 2000).

Quantities which are very sensitive to anisotropic contributions at smallest scales
are derivative moments of the turbulent velocity components, u′i. We denote moments
of odd orders (k = 1, 2, 3) by

S2k+1(∂u
′
i/∂xj) =

〈(∂u′i/∂xj)2k+1〉
〈(∂u′i/∂xj)2〉k+1/2

, (1.1)

and of even orders (k = 2, 3) by

K2k(∂u
′
i/∂xj) =

〈(∂u′i/∂xj)2k〉
〈(∂u′i/∂xj)2〉k . (1.2)

The brackets 〈·〉 denote the ensemble average and no tensor summations are applied
for i and j. If the turbulence in the shear flow is locally isotropic odd moments
of the transverse derivative (i = x, j = y) should decay as R−1

λ . Shen & Warhaft
(2000) measured a slower decay of the derivative skewness, S3(∂u

′
x/∂y) ∼ R−0.5

λ , with
a value of 0.2 at Rλ ∼ 1000. The fifth moment S5(∂u

′
x/∂y) remained constant while

S7(∂u
′
x/∂y) even increased in the range of Taylor Reynolds numbers between 100

and 1000. These results were confirmed in part by similar experiments of Ferchichi
& Tavoularis (2000). Third-order transverse derivative moments of both experiments
also agreed with those found in homogeneous shear flow simulations at Rλ ∼ 100
(Pumir 1996). All the results indicate that the influence of large-scale anisotropies on
the statistics of the smallest scales does not decay as fast as predicted by dimensional
arguments, and in some cases may not decay at all.

This paper addresses the numerical investigation of statistical properties in the sim-
plest shear flow configuration, the homogeneous shear flow. The flow is characterized
by the following mean profiles of the velocity components:

〈ux〉 = Sy, 〈uy〉 = 〈uz〉 = 0, (1.3)

where x is streamwise (or downstream), y shear (or wall-normal), and z spanwise
directions, respectively. The velocity components can be decomposed into a mean
fraction and a fluctuating turbulent part, ui = 〈ui〉 + u′i for i = x, y and z. Besides
finite difference methods with shear periodic boundary conditions (Gerz, Schumann &
Elgobashi 1989), pseudospectral methods in a fully periodic domain using a remeshing
(Rogallo 1981; Rogers & Moin 1987; Pumir 1996; Gualtieri et al. 2000) have mostly
been used to model a homogeneous shear flow. In this method, it was harder to
reach a stationary turbulent state. An alternative method to overcome this problem
was suggested by Schumacher & Eckhardt (2000). The method avoids the remeshing
that needs to be applied for the increasingly skewed grid of Rogallo (1981) and that
corresponds to a time-periodic driving of the flow. A statistically stationary state
for long times can be maintained by using stress-free boundary conditions in the
y-direction and an appropriate body force. Results for third and fourth order agreed
with those of Rogers & Moin (1987) and of Pumir (1996). Derivative skewness was
weakly decaying with respect to Rλ. This paper extends that analysis. We systematically
investigate the temporal fluctuations of the energy and enstrophy around their mean
values and compare them with the findings of Pumir (1996) and Gualtieri et al. (2000).
We show that the level of fluctuations around the mean quantities is much smaller
and reaches values that are observed in turbulence measurements. Energy as well
as shear-stress cospectra are studied. Inspired by recent experiments we extend the
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Run no. 1 2 3 4 5

Res 500 1000 1000 2000 2000
Rλ 59 79 87 95 99
Lx/Ly 2π 4π 2π 4π 2π
Lz/Ly 2π 2π 2π 2π 2π
Nx 256 256 256 256 256
Ny 65 129 65 129 65
Nz 256 128 256 128 256
kmaxη 2.82 2.48 1.62 1.54 1.00
∆y/η 0.57 0.50 0.99 0.80 1.60
λ/η 17.8 18.9 19.8 20.2 20.7
L/η 36.4 63.3 58.4 80.5 77.5

Table 1. The runs presented with their parameters: shear Reynolds number Res; Taylor Reynolds
number Rλ; aspect ratios Lx/Ly and Lz/Ly; numbers of grid points Nx, Ny and Nz; the spectral
resolution criterion kmaxη; and the ratios of grid spacing in the y-direction ∆y, of Taylor microscale
λ, and of integral length scale L to Kolmogorov length η.

analysis systematically to higher-order derivative moments (n 6 7) in the range of
Taylor Reynolds numbers accessible. Non-decreasing higher-order moments indicate
that very rare small-scale events may exist. We shall also discuss the problem of
statistical convergence of higher-order moments in detail.

2. Numerical model
With length scales measured in units of the gap width Ly , and time scales in units

of S−1, the dimensionless form of the equations for an incompressible Navier–Stokes
fluid become

∂u

∂t
+ (u · ∇)u = −∇p+

1

Res
∇2u+ f, ∇ · u = 0, (2.1)

where p(x, t) is the pressure, u(x, t) the velocity field. The shear Reynolds number
is Res = S L2

y/ν. In the x- and z-directions periodic boundary conditions apply. In
the other direction the flow domain is bounded by two parallel flat surfaces that are
assumed to be impenetrable and stress-free,

uy =
∂ux

∂y
=
∂uz

∂y
= 0 for y = 0, Ly. (2.2)

As discussed in more detail in Schumacher & Eckhardt (2001), the free-slip bound-
ary conditions allow efficient numerical simulations with Fourier modes for the
velocity components. The equations are integrated by means of a pseudospectral
technique using a 2/3-rule de-aliasing. Time integration was done by means of a
fifth order Runge–Kutta scheme with adaptive time stepping (Hairer, Nørsett &
Wanner 1993). In table 1 the computational parameters are summarized for all the
runs presented. The aspect ratio Lx/Lz and the shear Reynolds number Res were
varied. It is also clear that the spectral resolutions in x- and y-directions are different,
causing maximum wavenumber components of kx,max(= kz,max) = 2πNx/(3Lx) and
ky,max = 2πNy/3, respectively, after de-aliasing. As a criterion for sufficient spectral
resolution kmaxη > 1 is used (Pope 2000) with Kolmogorov length scale η = (ν3/ε)1/4

and kmax =
√

8πNx/(3Lx) for a uniform grid. For the present model with different grid
spacing in the three dimensions, we therefore take kmax = ((k2

x,max+k2
y,max+k2

z,max)/3)1/2.
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Figure 1. Mean velocity profiles of the three velocity components for different Reynolds numbers.
The inset magnifies the profiles at the boundary y/Ly = 1 where deviations from transverse
homogeneity are present. The thin solid line corresponds to the exact linear profile.

Additionally we plotted the ratio of grid spacing in the shear direction to the Kol-
mogorov scale, ∆y/η, to indicate sufficient spectral resolution. The Taylor microscale
λ is defined here with the downstream root-mean-square velocity

λ =
〈(u′x)2〉1/2

〈(∂u′x/∂x)2〉1/2 =
u′x,rms

(∂u′x/∂x)rms
, (2.3)

and the integral length scale L is given by

L =
1

〈(u′x)2〉
∫ ∞

0

dr〈u′x(x+ rex)u
′
x(x)〉. (2.4)

The Taylor Reynolds number follows as Rλ = u′x,rmsλ/ν. The mean shear and turbu-
lence are maintained by a suitable body force f(x, t). An almost linear mean profile
〈ux〉(y) = (y − 1/2) for y ∈ [0, 1] (in dimensionless form) can be approximated by a
finite Fourier sum of cosines

〈ux〉(y) ' − 4

π2

5∑
n=0

cos[(2n+ 1)πy]

(2n+ 1)2
. (2.5)

The external forcing f was chosen such that the six modes used in (2.5) remained
constant in time, i.e. ∂Re{ux(q, t)}/∂t = 0 for Fourier modes with q = (2n + 1)πey
for n = 0 to 5. It was shown by Schumacher & Eckhardt (2000) that this forcing,
although itself varying with respect to time, causes the expected mean profiles of the
velocity field components, 〈uy〉 = 〈uz〉 = 0 and 〈ux〉 = y (see figure 1). The effects of
the free-slip surfaces at y = 0 and y = Ly on the bulk behaviour are much weaker
than those of rigid walls, since only the wall-normal component is forced to vanish
and a nearly homogeneous, statistically stationary turbulent state can be established.
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Run no. 1 2 3 4 5

〈(u′x)2〉/q2 0.57 0.52 0.55 0.51 0.51
〈(u′y)2〉/q2 0.12 0.16 0.15 0.18 0.18
〈(u′z)2〉/q2 0.31 0.32 0.30 0.31 0.31
−〈u′xu′y〉/q2 0.11 0.12 0.11 0.12 0.12
S∗ 7.32 8.18 8.58 8.22 8.37
Sτη 0.38 0.25 0.25 0.19 0.19
P/ε 1.04 1.00 0.99 1.01 1.01
ε̃ 1.18 0.87 0.70 0.77 0.72
σ(Ẽ)/〈Ẽ〉t 0.20 0.12 0.11 0.09 0.10
σ(Ω̃)/〈Ω̃〉t 0.23 0.13 0.12 0.09 0.10

Table 2. Physical properties of the homogeneous shear flow runs: the Reynolds stress components
〈u′iu′j〉, shear parameter S∗, the ratio of Kolomogorov time τη to shear time S−1, the ratio of
turbulence production to dissipation P/ε, and the dimensionless energy dissipation rate ε̃. The last
two rows list the ratio of standard deviation to the temporal mean for the specific turbulent kinetic
energy, Ẽ = E/(SLy)

2, and the enstrophy, Ω̃ = Ω/S2.
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Figure 2. Temporal behaviour of (a) the specific turbulent kinetic energy E(t) and (b) specific
enstrophy Ω(t), for three values of Taylor Reynolds number: Rλ = 59 (dotted line), Rλ = 87 (dashed
line), Rλ = 99 (solid line).

3. Energy balance and power spectra
Figure 2 shows the temporal evolution of the specific turbulent kinetic energy E(t)

and the specific enstrophy Ω(t) defined as

E(t) = 1
2
〈(u′i)2〉V , Ω(t) = 1

2
〈(ωi)2〉V , (3.1)

where 〈·〉V denotes an average over the volume. The vorticity is defined as ω = ∇× u′.
The graphs indicate that a statistically stationary state is established in all cases.
Additionally we analysed the ratio of the standard deviations σ(E) and σ(Ω) to their
corresponding temporal means, 〈E〉t and 〈Ω〉t. Both ratios were found to be smaller
than for the results of remeshing simulations. Pumir (1996) and Gualtieri et al. (2000)
reported ratios of about 50% for both energy and enstrophy at Rλ ∼ 90. In contrast,
we found a decrease of the ratios from about 23% at Rλ = 59 to 10% at Rλ = 99 (see
table 2). The large fluctuations may thus be caused by the periodic driving due to the
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Figure 3. (a) Normalized energy spectra E(k)/(εν5)1/4 are plotted versus kη for different values

of Rλ. Straight solid line indicates scaling with k−5/3 and CK = 2. (b) Shear-stress cospectra
−Exy(kx)/(ε3S−5)1/2 versus kxLS with LS = (εS−3)1/2, for two values of Rλ. The straight solid line
indicates scaling with k

−7/3
x and Cxy = 0.15. Argument kx was taken here in order to compare recent

data to experimental findings.

remeshing, though this question still remains open. Statistical stationarity was further
checked by comparing the ratio of turbulent production, P = −〈u′xu′y〉∂〈ux〉/∂y, to
the energy dissipation rate, ε = ν〈(∂u′i/∂xj)2〉. The ratio P/ε was always found to
be very close to 1 (see table 2). The shear parameter S∗ = Sq2/ε with q2 = 〈(u′i)2〉
remained nearly unchanged in the five simulations, consistent with a nearly constant
ratio −〈u′xu′y〉/q2, which should equal 1/S∗ in the stationary case.

Next we investigated the energy dissipation rate as a function of the Taylor
Reynolds number. The expectation is that the energy dissipation rate at high Reynolds
numbers is independent of viscosity, and is a constant of order unity when rescaled
on the integral scale L and the root-mean-square velocity u′x,rms, i.e. ε̃ = εL/(u′x,rms)3.
In table 2 the results are given for the present data: ε̃ seems to saturate at order unity
for Rλ between 80 and 100 which cannot be exceeded with the present grid resolution.
A similar behaviour was found in the case of homogeneous isotropic turbulence
(Sreenivasan 1998).

As also listed in table 2, about half of the total amount of velocity fluctuation is
contained in the downstream component u′x. The downstream fluctuations 〈(u′x)2〉(t)
were found to always have a similar temporal shape to the total kinetic energies while
the mean-square moments for both remaining components u′y and u′z have smaller
variations with respect to time. We observed also that the fraction 〈(u′x)2〉/q2 with
q2 = 〈(u′i)2〉 decreased slowly with respect to Rλ. Both aspects seem to be connected
to the stronger fragmentation of coherent streaks and vortices (Schumacher & Eck-
hardt 2000, 2001) that is observed with increasing Re and the reduced downstream
correlation of the velocity fluctuations.

In figure 3(a) we plot the kinetic energy spectra for five Taylor Reynolds numbers.
With increasing values of Rλ a Kolmogorov scaling range can be observed for interme-
diate wavenumbers. The straight line is fitted with a (Kolmogorov) constant CK = 2.
It exceeds slightly the values of CK = 1.5–1.6 known from high-Reynolds-number
measurements (Pope 2000) which can be related to the bottleneck phenomenon
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Run no. 1 2 3 4 5

S3(ωz) −7.9× 10−1 −7.1× 10−1 −6.7× 10−1 −6.9× 10−1 −6.3× 10−1

K4(ωz) 5.6× 100 6.4× 100 6.6× 100 6.6× 100 7.3× 100

S5(ωz) −8.9× 100 −1.7× 101 −1.7× 101 −1.8× 101 −1.9× 101

K6(ωz) 4.9× 101 1.3× 102 1.5× 102 1.5× 102 1.9× 102

S7(ωz) −2.2× 102 −7.4× 102 −8.6× 102 −8.8× 102 −1.1× 103

S3(∂u′x/∂y) 9.6× 10−1 9.2× 10−1 9.0× 10−1 9.2× 10−1 8.7× 10−1

K4(∂u′x/∂y) 5.6× 100 6.4× 100 6.4× 100 7.2× 100 7.1× 100

S5(∂u′x/∂y) 1.0× 101 2.0× 101 2.0× 101 2.5× 101 2.1× 101

K6(∂u′x/∂y) 5.0× 101 1.3× 102 1.3× 102 2.0× 102 1.7× 102

S7(∂u′x/∂y) 2.1× 102 7.4× 102 7.5× 102 1.4× 103 9.5× 102

S3(∂u′x/∂x) −7.4× 10−1 −4.4× 10−1 −5.0× 10−1 −2.7× 10−1 −4.0× 10−1

K4(∂u′x/∂x) 6.3× 100 4.8× 100 5.3× 100 4.3× 100 5.0× 100

S5(∂u′x/∂x) −1.6× 101 −6.9× 100 −9.2× 100 −3.7× 100 −6.6× 100

K6(∂u′x/∂x) 1.2× 102 5.8× 101 7.8× 101 4.2× 101 6.8× 101

S7(∂u′x/∂x) −6.1× 102 −1.5× 102 −2.6× 102 −6.9× 101 −1.7× 102

Table 3. Derivative moments of order n = 3, 4, 5, 6 and 7 of the transverse derivative ∂u′x/∂y, the
longitudinal derivative ∂u′x/∂x and the spanwise vorticity ωz .

(Falkovich 1994). This effect causes an energy pileup that can result in a larger CK for
the small scaling ranges observed here. In figure 3(b) the cospectra are compared. It
is observed that their magnitude is always smaller by about two orders of magnitude
than the kinetic energy spectrum over the whole range of wavenumbers, except the
smallest. Both shear-stress cospectra fit the power law proposed by Lumley (1967) in
a small range of wavenumbers. The constant Cxy was found here to be Cxy ≈ 0.15,
similar to the values found in high-Reynolds-number experiments (Saddoughi &
Veeravalli 1994). As already mentioned, recent high-Reynolds-number measurements
by Kurien & Sreenivasan (2000) indicated deviations from the k

−7/3
x decay law. We

note here that our Taylor Reynolds number is too small to draw any robust conclu-
sion about the strength of deviations from the classical Kolmogorov–Lumley scaling,
but the results do not seem to contradict the concept of local isotropy on the level of
second-order moments.

4. Higher-order derivative moments
In this section, the quantities studied are those derivative moments that display sen-

sitivity to deviations from local isotropy. Three different quantites were investigated:
the transverse derivative of the turbulent streamwise velocity, ∂u′x/∂y, the spanwise
vorticity, ωz = ∂u′y/∂x − ∂u′x/∂y, and the longitudinal derivative of the turbulent
streamwise velocity, ∂u′x/∂x. In table 3 we summarize the results for orders 3 to 7
for five simulations. The moments of the longitudinal derivative ∂u′x/∂x do not vary
in order of magnitude for all values of n, and are found to agree with Ferchichi
& Tavoularis (2000) as well as with Shen & Warhaft (2000). For a larger range
of Taylor Reynolds numbers both experiments find a slow increase for all longitu-
dinal moments. If the turbulent flow were isotropic, the odd moments Sn(∂u

′
x/∂y)

would be exactly zero for all odd n > 0. In contrast, we observe non-zero values
for the transverse derivative and spanwise vorticity moments. While the third order
slowly decreases in the range of Taylor Reynolds numbers, fifth and seventh order
increase with Rλ. In figure 4 we compare our results with the numerical data of Pumir
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(1996) for S3(∂u
′
x/∂y) and with the experimental data of Shen & Warhaft (2000)

at Rλ ∼ 100. The error bars for our data display the standard deviation of the y
profiles of the moments. Averaging was always performed in time and in planes at
fixed y. Data points closest to the boundaries are excluded from the evaluation of
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the averages. The snapshots of the full velocity field were always separated by at
least one shear time unit, St = 1. The minimal number of snapshots used was 114
(for run 5). The results are in agreement with previous numerical and experimental
findings.

The fluctuations around the mean grow for increasing order as expected; they were
subjected to a more detailed investigation. Figure 5 shows the probability density
functions (p.d.f.), denoted p(z), of z = (∂u′x/∂y)/〈(∂u′x/∂y)2〉1/2 in column (a) and of
z = (∂u′x/∂x)/〈(∂u′x/∂x)2〉1/2 in column (b). The results are calculated from 6 × 108

data points at Rλ = 95. A check of the statistical convergence of the nth-order
moments can be made by plotting the integrands znp(z) over z which is also shown
in figure 5. While the longitudinal derivative has converged well, the integrands for
the transverse derivative show a strong scatter in the tails of the p.d.f. The area that
covers the scattered data measures the uncertainty around the mean in an alternative
way.

In the following, we wish to discuss the strong scattering of higher-order moments
and will demonstrate by means of a simple analytical model that this is a more general
feature for data analysis. The p.d.f. (see figure 5) can be roughly approximated by
the normalized exponential distribution p(z) = (α cosh (αz0)/2) exp(−α|z − z0|) for
which all moments can be evaluated analytically, to 〈zn〉 ∼ n! . Let N be the number
of statistically independent samples. The standard deviation, which is defined as
σ(zn) = [(〈z2n〉 − 〈zn〉2)/(N − 1)]1/2, follows then as

σ(zn) ' ± 1

αn

[
(2n)!− (tanh (αz0)n!)

2

N

]1/2

, (4.1)

for the odd normalized moments Sn =
∫
znp(z)dz. The denominator was simplified

because N � 1. When taking, e.g. α = 1 and z0 = 1, the standard deviation for
the seventh moment decreases from 24% at N = 105 to 1% at N = 108. Thus,
the calculation demonstrates clearly the sensitivity of higher-order moments to N
which can give rise to very large fluctuations around the mean as observed in our
simulations. While the moment itself is proportional to the factorial of the order,
n!, its fluctuations become proportional to ((2n)!)1/2. Tennekes & Lumley (1972)
estimated N(1) = T/(2τ) for a first-order moment, where τ is the integral time
scale and T the duration of the measurement. Starting from this point, Sreenivasan,
Chambers & Antonia (1978) extracted relations for the accuracy of higher-order
moments using their atmospheric boundary layer data. Following their work, the
number of statistically independent samples for an nth moment, N(n), would result
in N(n)/N(1) = (0.82 − 0.07 n)−1. Aside from the fact that the fluctuations for fixed
N and growing n can increase rapidly, this dependence would improve the statistical
convergence weakly.

In summary, we have presented an alternative method of modelling a statistically
stationary homogeneous shear flow by using stress-free boundary conditions in the
y-direction. At the level of second-order moments our results are not in conflict
with the classical concepts of local isotropy as indicated by the power spectra of the
velocity correlations. We found non-decreasing derivative moments for the orders 4
to 7 which agree with the experimental findings of Shen & Warhaft for Rλ ∼ 100 but
are in apparent violation of local isotropy. A next step would be to relate typical
structures of turbulent shear flows, such as streamwise vortices and streamwise streaks,
to the statistical properties presented here.
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